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Abstract 

This paper starts with definitions of convex, cone, pointed and some related 

properties in a linear space. Then we consider a partial ordering in such a linear 

setting and we investigate some special partially ordered linear spaces and list 

various known properties. Finally, we consider convex maps and their 

generalizations and also several types of differentials. 
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1. Linear Spaces and Convex Sets 

1.1 Definition        Let X be a given set. Assume that an addition on X, i.e., a map 

from X X  to X, and a scalar multiplication on X, i.e., a map from X  to X, is 

defined. The set X is called a real linear space, if the following axioms are satisfied 

(for arbitrary x, y,z X  and , ) :   

(a) (x y) z x (y z),      

(b) x y y x,    

(c) there is an element X0 X  with Xx 0 x   for all x X,  

(d) for every x X  there is a y X  with Xx y 0 ,   

(e) (x y) x y,      

(f) ( )x x x,      

(g) ( x) ( )x,     

(h) 1x x. 

The element X0  given under (c) is called the zero element of X. 

  

1.2 Definition       Let S and T be nonempty subsets of a real linear space X. Then we 

define the algebraic sum of S and T as 

  S+ T : {x + y | x S and y T}    

and the algebraic difference of S and T as  

                                                 
*
 Tutor, Dr., Department of Mathematics, Yadanabon University 



  2 

  

  S T : {x y | x S and y T}.      

For an arbitrary    the notation S  will be used as  

  S: { x | x S}.     

 

1.3 Definition     Let X be a real linear space. The set X  is defined to be the set of all 

linear mappings from X to .  If we define for all , X     and all    

  ( )(x) (x) (x) for all x X      

and  ( )(x) (x) for all x X,     

then X  is a real linear space itself  and it is called the algebraic dual space of X.  

The algebraic dual space of X   is denoted by X  and it is called the second 

algebraic dual space of X.   

 

1.4 Definition    Let S be a subset of a real linear space X. 

(a) Let some x S  be given. The set S is called starshaped at x , if for every x S  

  x (1 ) x S for all [0,1].       

(b) The set S is called convex, if for everyx, y  S  

  x + (1  )yS     for all [0, 1].  

 

 

 

 

 

 

 

 

             Convex set.                  Non-convex set. 

(c) The set S is called balanced, if it is nonempty and S Sfor all [ 1, 1].     

(d) The set S is called absolutely convex, if it is convex and balanced. 

Obviously, the empty set is convex and a set which is starshaped at every point 

is convex as well. 
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1.5 Remark  

(a) The intersection of arbitrarily many convex sets of a real linear space is convex. 

(b) If S and T are nonempty convex subsets of a real linear space X, then the algebraic   

sum S+ T   is convex for all , .   Consequently, for every x X  the 

translated set S+{x}  is convex as well. 

 

1.6 Definition  Let S be a nonempty subset of a real linear space X. The 

intersection of all convex subsets of X that contain S is called the convex hull of S 

and is denoted co(S).    

 

1.7 Remark For two nonempty subsets S and T of a real linear space we obtain for 

all ,    

co( S+ T) = co(S) + co(T).     

 

1.8 Definition  Let S be a nonempty subset of a real linear space X. 

(a) The set  

     cor(S) : {x S| for every x X there is a 0with x + x S for all [0, ]}          

      is called the algebraic interior of S ( or the core of S). 

(b) The set S with S = cor(S)  is called algebraically open. 

(c) The set of all elements of X which do not belong to cor(S)  and cor(X \ S)  is    

      called the algebraic boundary of S.                   

(d) An element x X  is called linearly accessible from S, if there is an x S, x x,          

      with the property x + (1  ) x S  for all ( 0, 1 ]. 

      The union of S and the set of all linearly accessible elements from S is called the    

      algebraic closure of S and it is denoted by  

  lin(S) : S {x X | x is linearly accessible from S}.    

      In the case of S = lin(S) the set S is called algebraically closed. 

(e) The set S is called algebraically bounded, if for every x S  and every x X  

     there is a 0   such that x + x S for all .      
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 These algebraic notions have a special geometric meaning. Take the 

intersections of the set S with each straight line in the real linear space X and consider 

these intersections as subsets of the real line . Then the set S is algebraically open, if 

these subsets are open; S is algebraically closed, if these subsets are closed; and S is 

algebraically bounded, if these subsets are bounded. 

 

1.9 Lemma For a nonempty convex subset S of a real linear space we have: 

(a) x cor(S), x lin(S) { x +(1 ) x | [0,1)} cor(S),         

(b) cor(cor(S)) = cor(S),  

(c) cor(S) and lin(S)  are convex, 

(d) cor(S) lin(cor(S)) = lin(S) and  cor(lin(S)) = cor(S).  

Proof.  See [3].                                                                                                      

 

1.10 Definition  Let C be a nonempty subset of a real linear space X.  

(a) The set C is called a cone, if  

  x C,    0 xC.  

(b) A cone C is called pointed, if  

XC ( C) {0 }.    

(c) A cone C is called reproducing, if  

  C C X.              

(d) A nonempty convex subset B of a convex cone XC {0 }  is called a base for C, if    

     each Xx C \{0 }  has a unique representation of the form 

  x = b for some > 0 and some b B.    

 Sometimes a cone is also called a wedge and a pointed  wedge is called a 

cone. 

 By definition each cone contains the zero element of the real linear space. The 

simplest cones in a real linear space X are X{0 }  and X itself. X{0 }  is also called the 

trivial cone. From a geometric point of view a nontrivial cone is a set of rays 

emanating from the origin. Consequently, each cone is starshaped at X0 .  

 

 

 



  5 

  

1.11 Lemma A cone D in a real linear space is convex if and only if  

D + D  D.  

Proof.     Assume that D is a convex cone. Then for every x, y D we have  

   x (1 ) y D     for all [0,1].   

Choose 
1

.
2

  Therefore, 
1 1 1

x y (x y) D.
2 2 2

     

Since D is a cone, we obtain x y D   and hence D + D   D.  

 For arbitrary x, y  D and [0,1],  we obtain  

  x Dand (1 ) y D.     

With the inclusion D + D  D we then get  

  x (1 ) y D,     

i.e., the cone D is convex.  

 

1.12 Lemma        Let C be a convex cone in a real linear space X with a nonempty 

algebraic interior. Then: 

(a) Xcor(C) {0 }  is a convex cone,  

(b) cor(C) = C +cor(C).  

Proof.    (a) Take arbitrary x cor(C)and > 0.   

For every x X  there is a 0   with x + x Cfor all [0, ].


   


 

Since C is a cone, we get (x + x) = x + x Cfor all [0, ].


      


 

So, we obtain x cor(C)   and with Lemma 1.9(c) the assertion is obvious. 

(b) The inclusion Xcor(C) = {0 } cor(C) C + cor(C)   is clear.  

For the proof of the converse inclusion we take arbitrary x C, x cor(C) and x X.    

Then there is a 0   with x + x C for all [0, ].     

Since C is assumed to be convex, we conclude with Lemma 1.11 

  x + x + x C for all [0, ]     

implying x + x cor(C).  So, we conclude C + cor(C) cor(C).  
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1.13 Lemma  A cone C in a real linear space X is reproducing, if cor(C) .  

Proof.  If cor(C) is nonempty, take some  x cor(C)  and any  x X.   

Then there is a 0   with x + x C   implying  

  
1 1

x C x C C.
 

    
  

     

So, we get X C C   and together with the trivial inclusion C C X   we obtain the 

assertion. 

 

1.14 Lemma        Each nontrivial convex cone with a base in a real linear space is 

pointed. 

Proof.  Let C be a nontrivial convex cone with base B.  

Take any x C ( C)    and assume that Xx 0 .   

Then there are 1 2b , b B  and 1 2 1 1 2 2, 0 with x = b b       implying  

1 2
1 2 X

1 2 1 2

b b 0 B.
 

  
     

  

But this is a contradiction to the afore-mentioned remark. 

 

1.15 Definition       Let S be a nonempty subset of a real linear space. The cone  

  cone(S) : {x X | x = sfor some 0 and some s S}       

is called the cone generated by S. 

 

2. Partially Ordered Linear Spaces   

2.1 Definition  Let X be a real linear space. 

(a) Each nonempty subset R of the product space X   X  is called a binary relation 

      R on X (we write xRy for (x, y)R).  

(b) Every binary relation   on X is called a partial ordering on X, if the following 

     axioms are satisfied (for arbitrary w, x, y, z  X ):  

(i) x   x ; 

(ii) x y, y   z x   z;  

(iii) x   y, w   z x + w   y + z;  

(iv) x   y,     x y. 
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(c) A partial ordering   on X is called antisymmetric , if the following implication 

      holds for arbitrary x, y X:  

x   y, y x x = y. 

  

In Definition 2.1, (b) with axiom (i) the partial ordering is reflexive and with (ii) 

it is transitive. The axioms (iii) and (iv) guarantee the compatibility of the partial 

ordering with the linear structure of the space.  

 

2.2 Definition  A real linear space equipped with a partial ordering is called a 

partially ordered linear space.  

 

2.3 Theorem  Let X be a real linear space. 

(a) If   is a partial ordering on X, then the set  

  XD : {x X | 0 x}    

is a convex cone. If, in addition,   is antisymmetric, then D is pointed. 

(b) If D is a convex cone in X, then the binary relation  

   D: (x, y) X X | y x D       

is a partial ordering on X. If, in addition, D is pointed, then D is antisymmetric.  

Proof.  (a) Suppose   is a partial ordering on X.  

Take any x Dand 0.     So, X0 x.  

Since   is a partial ordering on X, X0 x.   Therefore, D is a cone.  

Then take any x, y Dand [0,1].   

Since D is a cone, x Dand (1 ) y D.     So, X X0 x and 0 (1 ) y.      

Since   is a partial ordering on X, X0 x (1 ) y.      Therefore, D is a convex. 

Suppose   is antisymmetric. 

Take any x D ( D).    So, x D  and X Xx D,0 x and 0 x.      Then Xx 0 .  

Since   is antisymmetric, x = 0.   

Therefore, D is pointed. 

(b) Suppose D is a convex cone in X and x, y, z X.  

Let  D : (x, y) X X |y x D       be a binary relation. 

Since x x 0 D,    we get Dx x.  Therefore, the relation is reflexive.  
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Suppose Dx y  and Dy z . Therefore, y x D   and z y D.    

Then there exist 1d D  such that 1y x d  and 2d D  such that 2z y d .   

Since D is convex, by Lemma 1.11, we obtain Dx z and hence the relation is 

transitive. 

Suppose  D Dx y and w z.   Therefore, y x D and z w D.     

Then there exist 1d D  such that 1y x d  and 2d D such that 2z w d .     

Since D is convex, by Lemma 1.11, we obtain Dx w y z.    

Suppose Dx y  and .  Therefore, y – x  D. 

Since D is a cone, we get (y x) D    which implies  Dx y.    

Therefore, D is a partial ordering on X.  

In addition, suppose D is pointed. Take any x D y and y D x. 

Therefore, y x D and x y D.    This implies  y x D and y x ( D)     and 

hence y x D ( D).     Since D is pointed, Xy x 0   and we obtain x = y.  

Therefore,  D is antisymmetric. 

 

2.4 Definition    A convex cone characterizing a partial ordering in a real linear space 

is called an ordering cone.   

 

 Several authors also call an ordering cone a positive cone. We denote C  as a 

partial ordering induced by a convex cone C. 

 

2.5 Definition    Let X be a partially ordered linear space. For arbitrary elements 

x, y X with x y   the set  

  [x, y]: {z X | x z y}     

is called the order interval between x and y. 

 If C is the ordering cone in a partially ordered linear space, then the order 

interval between x and y can be written as  

  [x, y] ({x}+ C) ({y} C).    
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2.6 Lemma  Let X be a partially ordered linear space with the ordering cone 

C. Let Cx, y X with x {y} C(i.e., x y)     be arbitrarily given. Then we have for 

1
z : (x + y) :

2
  

(a) The order interval [x z, y z]  is absolutely convex. 

(b) If  cor(C)  and x {y} cor(C), then z cor([x, y]).     

(c) If C is algebraically closed, then [x, y] is algebraically closed.  

(d) If C is algebraically closed and pointed, then [x, y] is algebraically bounded. 

Proof.          (a) With the equality 

1 1
[x z, y z] = (y x), (y x)

2 2

 
     

 
 

the assertion is obvious. 

(b) Since  

1
z = x + (y x) {x}+ cor(C)

2
   

and   
1

z = y (y x) {y} cor(C),
2

     

we conclude z cor([x, y]).  

(c) Because of the equality [x, y] ({x}+ C) ({y} C)    this assertion is evident. 

(d) First, if the pointed convex cone C is algebraically closed, then the complement 

set X \ C  is algebraically open. 

For if we assume that X \ C  is not algebraically open, then there is an 

x X \ C and an h X   so that for all 0   

  x + h C for some (0, ].     

Since C is convex, we conclude for some x : x + h C    

  x + (1 ) x C for all (0,1]     

which implies x lin(C) = C.  But this contradicts the assumption x C.   

So, the complement set X \ C  is algebraically open.  

In order to prove that [x,y] is algebraically bounded we take any 

Xv [x, y]and any w X \{0 }.    

Then we consider the two cases w Cand w C.   
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Assume that w C.  Since X \ C  is algebraically open, there is a 0   with  

  w + (v x) X \ C for all [0, ].      

The set X(X \ C) {0 }  is a cone and, therefore, we obtain 

  
1

(w + (v x)) X \ C for all (0, ]     


    

or alternatively  

1 1
(w + (v x)) X \ C for all [ , ).     

 
 

But then we have 

1
v x + w X \ C for all [ , )     


  

and  
1

v + w {x}+ C for all [ , )    


 

which implies 
1

v + w [x, y] for all [ , ).    


 

Next, assume that w C.  Since the ordering cone C is assumed to be pointed and 

Xw 0 ,  we conclude w C.    

With the same arguments as before there is a 0   with  

  
1

v + w [x, y] for all [ , ).    


 

Hence, the order interval [x, y] is algebraically bounded. 

 

2.7 Definition    Let X be a real linear space with a convex cone XC .  

(a) The cone X XC : {x X | x (x) 0 for all x C }        is called the dual cone for XC .  

     The partial ordering in X  which is induced by XC   is called the dual partial 

     ordering. 

(b) The set #
X XX

C : {x X | x (x) 0 for all x C \{0 }}


       is called the quasi-interior 

      of the dual cone for XC .  
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Notice that XC   is a convex cone so that Definition 2.7, (a) makes sense. For  

X XC {0 }  we obtain X XC X ,and for C X     we have X XC {0 }.   If the quasi-

interior #
X

C
  of the dual cone for X C  is nonempty, then #

XX
C {0 }

  is a nontrivial 

convex cone. With the following lemma we list some useful properties of dual cones 

without proof. 

 

2.8 Lemma  Let X XC and D  be two convex cones in a real linear space X 

with the dual cone X XC and D ,   respectively. Then: 

(a) X X X XC D D C ;             

(b) X XC D   is the dual cone for X XC + D ;  

(c) X X X XC D and C D   have the same dual cone; 

(d) X XC D   is a subset of the dual cone for X XC D .     

 

 In general, the quasi-interior of the dual cone does not coincide with the 

algebraic interior of the dual cone but the following inclusion holds. 

 

2.9 Lemma  If XC  is a convex cone in a real linear space X and X  

separates elements in X (i.e., two different elements in X may be separated by an 

hyperplane), then #
X X

cor(C ) C . 
  

Proof.  The assertion is trivial for X XC {0 }  and for Xcor(C ) .    

If X XC {0 }  and Xcor(C ) ,    then take any Xx cor(C )  and assume that 

#
X

x C .


   

Consequently, there is an X Xx C \{0 } with x(x) = 0.   

Since X  separates elements in X, there is a linear functional x X   with the 

property x (x) < 0.   

Then we conclude ( x + (1 ) x)(x) < 0 for all > 0    which contradicts the 

assumption that Xx cor(C ).    
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2.10 Lemma  If XC  is a convex cone in a real linear space X, then 

  X X Xcor(C ) {x X | x (x) > 0 for all x C \{0 }}.       

Proof.  Take any Xx cor(C )  and any X Xx C \{0 }.    

Consequently, there are an x X  with x (x) < 0  and a 0   with Xx + x C .   

Hence, we obtain x (x + x) 0   and x (x) x (x) 0    which leads to the 

assertion.      

 

2.11 Lemma  Let XC  be a convex cone in a real linear space X.  

(a) If Xcor(C )  is nonempty, then XC   is pointed. 

(b) If #
X

C
  is nonempty, then XC  is pointed. 

Proof.  (a) For every X Xx C ( C )     we have  

Xx (x) = 0 for all x C  

and especially for some Xx cor(C )  we get x (x) = 0.   

With Lemma 2.10 we obtain Xx = 0 ,  and this implies  

X X XC ( C ) {0 }.       

 (b) Take any X Xx C ( C ).    If we assume that Xx 0 ,  we obtain for every 

#
X

x C


    

   x (x) > 0 and x (x) < 0     

which is a contradiction.            

 

2.12 Lemma  Let  XC  be a nontrivial convex cone in a real linear space X. 

(a) For every #
X

x C


  the set XB : { x C | x (x) = 1}    is a base for XC .       

(b) In addition, let XC  be reproducing and let XC  have a base. Then there is an 

     #
X

x C


  with XB { x C | x (x) = 1}.       
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Proof.  (a) Choose any #
X

x C .


   

Then we obtain for every X Xx C \{0 },  x (x) > 0  and, therefore, x can be uniquely 

represented as  

  
1 1

x = x (x) x for x B. 
x (x) x (x)


 

 

Hence, the assertion is evident. 

(b) We define the functional X Xx : C \{0 }   with  

 X Xx (x) = (x) for all x C \{0 }  where (x) is the positive number in the 

representation formula for x.  

It is obvious that x   is positively homogeneous.  

In order to see that it is additive pick some elements X Xx, y C \{0 }.  

Then we obtain   

  
1 x (x) 1 x (y) 1

(x + y) = x + y B 
x (x) + x (y) x (x) + x (y) x (x) x (x) + x (y) x (y)

 


       
 

because 
1 1

x B, y B
x (x) x (y)

 
 

 and B is convex.  

Consequently, we get  

  X Xx (x + y) = x (x) + x (y) for all x, y C \{0 }.    

Hence, x   is a positively homogeneous and additive functional on X XC \{0 }.   

Next, we define Xx (0 ) : 0  and we see that this extension is positively homogeneous 

and additive on XC  as well.  

Finally we extend x   to X XX = C C  by defining 

  Xx (x y) : x (x) x (y) for all x, y C .       

It is obvious that x   is positively homogeneous and additive on X, and since 

  Xx (x y) x (x) x (y) = x (y x) for all x, y C ,          

x   is also linear on X. With  

X Xx (x) > 0 for all x C \{0 },   

we obtain #
X

x C .


  The set equation     

XB { x C | x (x) = 1}        

is evident, if we use the definition of x .  
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3. Convex Maps 

 The importance of convex maps is based on the fact that the image set of such 

a map has useful properties. One of these properties is also valid for so-called   

convex-like maps which are investigated in this section as well. 

  

3.1 Definition  Let X and Y be real linear spaces. A map T : X Y  is called 

linear, if for all x, y X  and all ,    

  T( x y) T(x) T(y).      

 

 The set of continuous (bounded) linear maps between two real normed spaces 

X
(X, . )  and 

Y
(Y, . )  is a linear space as well and it is denoted B(X,Y).  With the 

norm . : B(X,Y)  given by 

  
X

Y

x 0 X

T(x)
T sup

x

  for all T B(X,Y)  

 B(X,Y), .  is even a normed space. 

 

3.2 Definition  Let X and Y be real separated locally convex linear spaces, and 

let T : X Y  be a linear map. A map 
* * *T : Y X  given by 

  * * *T (y )(x) y (T(x))  for all x X  and all * *y Y  

is called the adjoint (or conjugate and dual, respectively) of T. 

 

3.3 Theorem  Let X and Y be real separated locally convex linear spaces, and 

let the elements * *x X,x X , y Y    and * *y Y be given. 

(a) If there is a linear map T : X Y  with y T(x) and * * *x T (y ),  then 

* *y (y) x (x).  

(b) If *

*
X Y

x 0 , y 0   and * *y (y) x (x),  then there is a continuous linear map 

T : X Y with y T(x) and * * *x T (y ).  
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Proof.  (a) let a linear map T : X Y  with y T(x) and * * *x T (y )  be 

given. Then we get 

  * * * * *y (y) y (T(x)) T (y )(x) x (x)    

which completes the proof. 

(b) Assume that for Xx 0  and *

*

Y
y 0  the functional equation  

  * *y (y) x (x).          (1) 

is satisfied. In the following we consider the two cases *x (x) 0  and *x (x) 0.  

(i) First assume that *x (x) 0. Then we define a map T : X Y  by 

  
*

*

x (z)
T(z) y

x (x)
  for all z X.        (2) 

Evidently, T is linear and continuous. From (1) and (2) we conclude T(x) y  and  

  
*

* * *

*

x (z)
y (T(z)) y (y) x (z)

x (x)
   for all z X  

which means * * *x T (y ).  

(ii) Now assume that *x (x) 0.  Because of *

*

Y
y 0  there is a Yy 0  with 

*y (y) 1.  

Since in a separated locally convex space *X  separates elements of X, Xx 0  implies 

the existence of some * *x X  with *x (x) 1.  

Then we define the map T : X Y  as follows 

  * *T(z) x (z)y x (z)y   for all z X.      (3) 

It is obvious that T is a continuous linear map. With (3) we conclude  

  * *T(x) x (x)y x (x)y y.    

Furthermore, we obtain with (3) and (1) 

  * * * * * *y (T(z)) x (z)y (y) x (z)y (y) x (z)    for all z X  

which implies * * *x T (y ).   
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3.4 Definition  Let X and Y be real linear spaces, YC  be a convex cone in Y, 

and let S be a nonempty convex subset of X. A map f :S Y  is called convex (or 

YC -convex), if for all x, y S  and all [0,1]   

  Yf (x) (1 )f (y) f ( x (1 )y) C .             (4) 

 A map f :S Y is called concave (or YC -concave), if f  is convex. 

 If 
YC  is the partial ordering in Y induced by YC ,  then the condition (4) can 

also be written as  

  
YCf ( x (1 )y) f (x) (1 )f (y).        

If f is a linear map, then f and f  are convex maps. 

 

3.5 Definition  Let X and Y be real linear spaces, let YC  be a convex cone in 

Y, let S be a nonempty subset of X, and let f :S Y  be a given map. The set  

   Yepi(f ) (x, y) | x S, y {(f (x)} C                    (5) 

is called the epigraph of f. 

  

 Notice that the epigraph in (5) can also be written as  

   
YCepi(f ) (x, y) | x S,f (x) y .    

It turns out that a convex map can be characterized by its epigraph. 

3.6 Theorem  Let X and Y be real linear spaces, let YC  be a convex cone in 

Y, let S be a nonempty subset of X and let f :S Y  be a given map. Then f is 

convex if and only if epi(f )  is a convex set. 

Proof.  (a) Let f be a convex map ( then S is a convex set).  

For arbitrary 1 1 1 2 2 2z (x , y ), z (x , y ) epi(f )    and [0,1]   we obtain  

1 2x (1 )x S     and    

       1 2 1 Y 2 Yy (1 )y f (x ) C (1 ) f (x ) C          

                1 2 Yf (x ) (1 )f (x ) C      

     1 2 Yf ( x (1 )x ) C .      

Consequently, we have 1 2z (1 )z epi(f ).     Thus, epi(f )  is a convex set. 
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(b) If epi(f )  is a convex set, then S is convex as well.  

For arbitrary 1 2x , x S  and  [0,1]   we obtain  

  1 1 2 2(x ,f (x )) (1 )(x ,f (x )) epi(f )      

and  
Y1 2 C 1 2f ( x (1 )x ) f (x ) (1 )f (x ).        

Hence, f is a convex map. 
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